唯寻国际教育旗下指定官方网站
课程咨询热线 400-825-6055
牛剑藤校

新2020AMC真题解析 还不快来对答案

11-19
唯寻杯

今年国内热度超高的AMC已经考完啦,为你整理了2020AMC真题解析,快来对答案,看看自己是否过线有望吧。

(篇幅所限,本文只分析前十道2020AMC真题,完整版解析敬请关注本站)

新2020AMC真题解析 还不快来对答案内容图片_1

(点击阅读热知识:AMC数学竞赛是什么 以下就能考的美国权威竞赛


2020AMC题目分析

AMC(American Mathematics Competition)是由美国数学协会MAA于1950年成立。课程分为AMC10(针对国际学校10年级以下学员)、AMC12(针对国际学校12年级以下学员)等多个组别。当年获得AMC10前2.5%和AMC12前5%的同学可以参加当年3月的AIME邀请赛。


2020AMC真题解析(1-10)

Q1

Luka is making lemonade to sell at a school fundraiser. His recipe requires 4 times as much water as sugar and twice as much sugar as lemon juice. He uses 3 cups of lemon juice. How many cups of water does he need? (        )

卢克正在制作柠檬水以在学校筹款活动中出售。 他的食谱需要 4 倍于糖的水和 2 倍于柠檬汁的糖。 他用了 3 杯柠檬汁。 请问他需要多少杯水?

A. 6     B. 8     C. 12     D. 18     E. 24


(Difficulty Level:☆, Algebra - Fractions)


Solution    E

The ratio of water to sugar to lemon juice in general is 8 : 2 : 1. So if 3 cups of lemon juice used, 8 x 3 = 24 cups of water would be needed.


Q2

Four friends do yardwork for their neighbors over the weekend, earning 15 dollars, 20 dollars, 25 dollars, and 40 dollars, respectively. They decide to split their earnings equally among themselves. In total how much will the friend who earned 40 dollars give to the others? (        ).

A.5 dollars   B.10 dollars   C.15 dollars 

D.20 dollars  E.25 dollars


(Difficulty Level:☆, Algebra - Mean Calculation)


Solution    C

The average is

新2020AMC真题解析 还不快来对答案内容图片_4

Thus the person with 40 dollars would redistribute 40 - 25 = 15 dollars.


Q3

Q3. Carrie has a rectangular garden that measures 6 feet by 8 feet. She plants the entire garden with strawberry plants. Carrie is able to plant 4 strawberry plants per square foot, and she harvests an average of 10 strawberries per plant. How many strawberries can she expect to harvest? (        ).

A. 560     B. 960     C. 1120     D. 1920    E. 3840


(Difficulty Level:☆, Algebra - Four Operations)


Solution    D

There are 6 x 8 = 48 square foot, and hence 4 x 6 x 8 = 192 plants. Consequently 192 x 10 = 1920 strawberries does Carrie harvest.


Q4

Three hexagons of increasing size are shown below. Suppose the dot pattern continues so that each successive hexagon contains one more band of dots. How many dots are in the next hexagon? (        ).

A. 35     B. 37     C. 39     D. 43     E. 49

新2020AMC真题解析 还不快来对答案内容图片_5

(Difficulty Level:☆, Geometry- Pattern of Shapes)


Solution    B

Except the very center, moving to a next hexagon includes one more band of dots, i.e. the fourth graph would include a fourth layer, yielding (4 - 1) x 6 = 18 new dots.

In total, 1 + (2 - 1) x 6 + (3 - 1) x 6 + (4 - 1) x 6 = 1 + 6 + 12 + 18 = 37.


Q5

 Three fourths of a pitcher is filled with pineapple juice. The pitcher is emptied by pouring an equal amount of juice into each of 5 cups. What percent of the total capacity of the pitcher did each cup receive? (        ).

A. 5     B. 10     C. 15     D. 20     E. 25


(Difficulty Level:☆, Algebra - Fractions)


Solution    C

Equally distribute three quarters into five cups.

新2020AMC真题解析 还不快来对答案内容图片_6


Q6

Aaron, Darren, Karen, Maren, and Sharon rode on a small train that has five cars that seat one person each. Maren sat in the last car. Aaron sat directly behind Sharon. Darren sat in one of the cars in front of Aaron. At least one person sat between Karen and Darren. Who sat in the middle car? (        ).

A. Aaron     B. Darren     C. Karen     

D. Maren     E. Sharon


(Difficulty Level:☆, Combinatorics - Reasoning)


Solution    A

Obviously Maren is not the person (the very last position).

新2020AMC真题解析 还不快来对答案内容图片_7

Since Aaron sat directly behind Sharon, they could be considered as a small team. Now Darren sat somewhere in front of Aaron, it turns out to be

新2020AMC真题解析 还不快来对答案内容图片_8

where the dots indicate possibility of other people. Now at least one person sat between Karen and Daren, thus Karen could only be the second to the last, indicating

新2020AMC真题解析 还不快来对答案内容图片_9

Q7

How many integers between 2020 and 2400 have four distinct digits arranged in increasing order? (For example, 2357 is one such integer.) (        )

A. 9     B. 10     C. 15     D. 21     E. 28


(Difficulty Level:☆, Combinatorics - Permutation and Combination Numbers)


Solution    C

In strictly increasing order digits, such number must start be 2300 to 2399, i.e. only 3 could be the hundred digit. Thus it remains to pick two distinct numbers from 4 to 9, with natural order we don’t need a permutation.

Note that there are 9 - 4 + 1 = 6 digits.

新2020AMC真题解析 还不快来对答案内容图片_10


Q8

Ricardo has 2020 coins, some of which are pennies (1-cent coins) and the rest of which are nickels (5-cent coins). He has at least one penny and at least one nickel. What is the difference in cents between the greatest possible and least possible amounts of money that Ricardo can have? (        ).

A. 8062     B. 8068     C. 8072     D. 8076

E. 8082


(Difficulty Level:☆, Algebra - Four Operations)


Solution    C

Let’s figure out the greatest and least possible amount of money. Since at least one penny and at least one nickel, the greatest amount would be the case where one penny and all the rest nickels; and least amount would be the cases where one nickel and all the rest pennies. Hence


(5 x 2019 + 1) - (1 x 2019 + 5) 

= (5 - 1) x 2019 + (1 - 5)

= 4 x 2019 - 4

= 4 x 2018 = 8072.


Q9

Akash’s birthday cake is in the form of a 4 x 4 x 4 inch cube. The cake has icing on the top and the four side faces, and no icing on the bottom. Suppose the cake is cut into 64 smaller cubes, each measuring 1 x 1 x 1 inch, as shown below. How many of the small pieces will have icing on exactly two sides? (        ).

新2020AMC真题解析 还不快来对答案内容图片_11

A. 12     B. 16     C. 18     D. 20     E. 24


(Difficulty Level:☆, Geometry - Surface Areas of Solid Figures)


Solution    D


Exactly two sides have icing means they are the units on the edges but not the top corners (only top corners have three sides). BE CAREFUL the bottom corners have two sides as well. Therefore, two on each of the top edges, and three on each of the side edges

4 x 2 + 4 x 3 = 20.


Q10

Zara has a collection of 4 marbles: an Aggie, a Bumblebee, a Steelie, and a Tiger. She wants to display them in a row on a shelf, but does not want to put the Steelie and the Tiger next to one another. In how many ways can she do this? (        ).


A. 6     B. 8     C. 12     D. 18     E. 24


(Difficulty Level:☆☆, Combinatorics - Counting Principles)


Solution    C

By complement, first there are 4! = 24 ways to arrange all without restrictions. Next the cases where Steelie is next to Tiger are counted as 

2! x 3! = 12

by grouping them together. Their bundle with the other two forms 3! arrangements, and 2! as a factor of themselves arranged in the bundle.

Therefore the complement is

24 - 12 = 12.

以上就是对部分2020AMC真题的解析,大家看下来觉得自己考得如何呀。AMC的小伙伴可以松一口气了,AMC10/12的小伙伴则要进入复习状态了。

竞赛的难度不容小觑,如果你不想浪费宝贵的复习时间,希望大大提升夺奖几率,点击报名【竞赛复习班】,知名大学海归竞赛导师带班,梳理考点,训练考试技巧,启发竞赛思维,帮你找到属于你的解题思路与方策略。

CCC化学竞赛真题资料 2020参赛的你能答对多少?内容图片_3

CCC化学竞赛真题资料 2020参赛的你能答对多少?内容图片_4

更多AMC复习攻略点击

2021AMC10竞赛2月后开考 如何复习才能助力拿奖    

amc美国数学竞赛冷门攻略 IB和AP学员重点收藏    

新2020AMC真题解析 还不快来对答案内容图片_13

扫码添加小唯

你的专属留学管家




相关标签:
定制化留学指南
留学资料免费领取
开启buff留学之路
  • 英美留学规划时间轴
  • 牛剑面试sample
  • 牛津数学系面试真题解析
  • 剑桥雅思官方真题集
  • 33所大学申请指南
  • 牛津大学留学指南
  • 美国大学10年录取形势变化统计报告
  • 剑桥大学留学指南
  • QS300英国院校指南合集
  • 更多留学资料
立即领取
唯寻导师团队

潘田翰(创始人)

剑桥大学化学工程硕士

Candise Cai

牛津大学化学硕士

Chris Chen

帝国理工学院物理学士

Ruby Rui

剑桥大学经济系学士&双硕士学位

Elaine Xu

牛津大学数学与统计专业学士

Olivia Hu

纽卡斯尔大学语言学专业硕士

Irene Liu

约翰霍普金斯大学国际关系/国际经济硕士

Mini Liu

东南密苏里州立大学双硕士

Shanshan Yu

英国伦敦政治经济学院金融学硕士

Stephy Tian

帝国理工化学硕士

Max Liu

帝国理工大学生物病毒学硕士

Sherry Lu

剑桥大学教育语言学硕士

Sue Pang

牛津大学经济与管理学士学位&LSE硕士

Jaryn Huang

牛津大学社会人类学专业哲学硕士

Peter Liu

牛津大学工程科学专业学士&硕士

Frances Zhu

牛津大学化学专业学士&硕士

Qianli Xia

剑桥大学数学系荣誉学士&硕士

Fang Yuan

美国普渡大学生物工程荣誉学士

Freda Yang

伦敦大学学院应用语言学硕士

Bo Su

范德堡大学英语教育硕士

Yuchen Yang

剑桥大学化学工程专业学士&硕士

Dora Liang

华威大学硕士

Tiffany Lin

伦敦大学学院经济学硕士
唯寻业务优势
  • 专业做牛剑/G5申请、牛剑笔面试培训,案例多数据全,经验丰富,筑梦牛剑/G5。
  • 众多牛剑+藤校等TOP院校背景导师,为您打造专属留学方案。英美留学绿色通道,个性规划,便捷申请。
  • 顾问师/规划师/课程导师/助教四位一体线上+线下服务闭环,让家长和学员放心。学习有方法,成长看得见。
  • ALevel/IB/AP/IGCSE国际课程辅导,牛剑/G5/藤校留学申请,竞赛背提培训,标化语言考试一体化服务。
荣誉源于实力
留学教育行业"全国知名度"品牌机构
Oxford International AQA Approved Teaching School
雅思考试合作伙伴项目明日之星
荣获新浪《年度品牌影响力国际教育机构》
荣获腾讯《年度影响力在线教育品牌》
荣获新华社《口碑影响力课外辅导机构》
National Economics challenge 2020 Official Test Center
2018年度家长信赖在线教育品牌

在线抢试听名额

学习有方法,成长看得见

筑梦牛剑/G5/常春藤

立即领取
相关文章推荐
唯寻导师推荐
换一换

Max Liu

帝国理工大学生物病毒学硕士

帝国理工大学生物分子及病毒学硕士

·  南安普顿大学生物化学学士学位

·  高中就读于深圳国际交流学院

·  大学期间开始接触国际课程教学,毕业后曾加入知名国际教育机构任职教学主管及生物学科主管,是较早一批加入线上教育以及搭建教育平台的人员之一;

·  热爱教育,认真负责,善于以同理心换位思考,为不同学生设置不同的教学模式,帮助学生提高成绩,搭建知识体系

立即领取