刚接触IGCSE数学的同学在看到复杂的函数题时是不是有种想哭的感觉,除了各种陌生的词汇以外,也找不到做题的正确方法,导致了自己的IGCSE数学成绩不太理想。下面给大家讲一个非常好用的IGCSE数学多项式函数题的解题方法,如果你有需要的话,赶紧学起来吧!
换元法就是换掉式子中的一些元素,让复杂的等式变得简单化,明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有着独到作用,因此在解一些复杂的因式分解问题时常常可以用到换元法,帮助我们找到解题的捷径。
如何“换元”
即对结构比较复杂的多项式,将其中某些部分看成一个整体,用新字母代替。
例如:solve the equation x^4-3x^2-4=0
在这个式子中,我们就可以假设 y=x^2
则原式可以改写为 y^2-3y-4=0
这样我们就可以继续因式分解为 (y+1)(y-4)=0
则 y=-1 or y=4
但这时要注意,我们原本假设 y=x^2
因此 x^2=-1(不成立) or x^2=4
则 x=±2
因此,借助换元法,可以帮助我们有效的减少多项式相数,降低复杂结构。
这个方法也同样适用于一些更复杂的多项式中,例如:
1)在 x+√x-20=0 中,可以假设 y=√x,则原等式可以写为 y2+y-20=0
2)在 9^x-10(3^x)+9=0,可以假设 y=3^x,则原等式可以写为 y^2-10y+9=0
看了以上的例题,同学们学会解IG数学函数题了吗?
许多初次接触IGCSE的同学,在选课完成后都会碰到纯英语环境无所适从、教学模式突变无法适应等问题,如果放任问题越来越大,就会错过冲刺高分的最佳时间。点击报名【唯寻IGCSE同步培训班】,唯寻教学天团授课,课前全面沟通,课后跟踪反馈 ,定制课程规划,“阶梯式”教学激发学员学习动力,帮助你顺利度过国际课程适应期。
点击
查看更多。
学习有方法,成长看得见
筑梦牛剑/G5/常春藤